The Myhill-Nerode Theorem (lecture 20)

Isomorphism of DFAs

- $M = (Q_M, S, d_M, s_M, F_M), N = (Q_N, S, d_N, s_N, F_N)$: two DFAs
- M and N are said to be isomorphic if there is a (structure-preserving) bijection f: Q_M-> Q_N s.t.
 f(s_M) = s_N
 - $f(d_M(p,a))$ = $d_N(f(p),a)$ for all $p \in Q_M$, $a \in S$
 - $p \in F_M$ iff $f(p) \in F_N$.
- I.e., M and N are essentially the same machine up to renaming of states.

• Facts:

- 1. Isomorphic DFAs accept the same set.
- 2. if M and N are any two DFAs w/o inaccessible states accepting the same set, then the quotient automata M/≈ and N/ ≈ are isomorphic
- 3. The DFA obtained by the minimization algorithm (lec. 14) is the minimal DFA for the set it accepts, and this DFA is unique up to isomorphism.

Myhill-Nerode Relations

- R: a regular set, M=(Q, S, d,s,F): a DFA for R w/o inaccessible states.
- M induces an equivalence relation =_M on S* defined by
 x = M y iff D(s,x) = D (s,y).
 - i.e., two strings x and y are equivalent iff it is indistinguishable by running M on them (i.e., by running M with x and y as input, respectively, from the initial state of M.)

• Properties of \equiv_{M} :

• 0. \equiv_{M} is an equivalence relation on S^{*}.

(cf: \approx is an equivalence relation on states)

- 1. \equiv_{M} is a right congruence relation on S*: i.e., for any $x, y \in S^*$ and $a \in S$, $x \equiv_{M} y = xa \equiv_{M} ya$.
- pf: if $x \equiv M y => D(s,xa) = d(D(s,x),a) = d(D(s,y),a) = D(s,ya)$ ya)

$$=$$
 xa \equiv _M ya.

Properties of the Myhill-Nerode relations

Properties of \equiv_{M} :

0

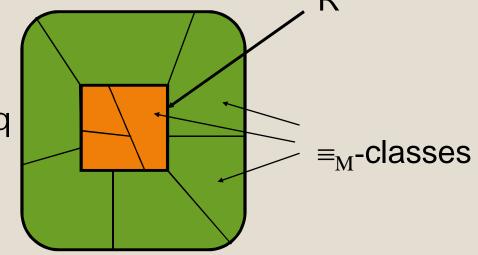
∘ 2. \equiv_{M} refines R. I.e., for any $x, y \in S^*$,

$$x \equiv_M y = > x \in R \text{ iff } y \in R$$

- pf: $x \in R$ iff $D(s,x) \in F$ iff $D(s,y) \in F$ iff $y \in R$.
- Property 2 means that every \equiv_{M} -class has either all its elements in R or none of its elements in R. Hence R is a union of some \equiv_{M} -classes.
- 3. It is of finite index, i.e., it has only finitely many equivalence classes.
- (i.e., the set { $[x] = M | x \in S^*$ } • is finite.

• pf:
$$x \equiv_M y$$
 iff $D(s,x) = D(s,y) = c$

- for some $q \in Q$. Since there
- are only |Q| states, hence
- S* has |Q| ≡_M-classes



Definition of the Myhill-Nerode relation

= : an equivalence relation on S*,

R: a language over S*.

- = is called an Myhill-Nerode relation for R if it satisfies property 1~3. i.e., it is a right congruence of finite index refining R.
- Fact: R is regular iff it has a Myhill-Nerode relation.
 - (to be proved later)
 - 1. For any DFA M accepting R, \equiv_M is a Myhill-Nerode relation for R
 - 2. If \equiv is a Myhill-Nerode relation for R then there is a DFA M_{\equiv} accepting R.
 - 3. The constructions $M \to \equiv_M and \equiv \to M_{\equiv}$ are inverse up to isomorphism of automata. (i.e. $\equiv = \equiv_{M_{\equiv}} and M = M \equiv_M$)

From ≡ to M≡

- R: a language over S, ≡ : a Myhill-Nerode relation for R;
 - the =-class of the string x is $[x]_{=} =_{def} \{ y \mid x \equiv y \}$.
 - Note: Although there are infinitely many strings, there are only finitely many \equiv -classes. (by property of finite index)
- Define DFA $M \equiv = (Q, S, d, s, F)$ where
 - $Q = \{ [X] | X \in S^* \}, \quad S = [e],$
 - $F = \{ [x] | x \in R \}, \quad d([x],a) = [xa].$
- Notes:
 - 0: M_{\equiv} has |Q| states, each corresponding to an \equiv -class of \equiv . Hence the more classes \equiv has, the more states $M\equiv$ has.
 - 1. By right congruence of = , d is well-defined, since, if y,z ∈[x]
 y = z = x => ya = za = xa => ya, za ∈ [xa]
 - 2. $x \in R$ iff $[x] \in F$.
 - pf: =>: by definition of M=;
 - <=: $[x] \in F =>$ \$ y s.t. y \in R and x = y => x \in R. (property 2)

$M \rightarrow \equiv M$ and $\equiv M \rightarrow M \equiv$ are inverses

Lemma 15.1: D([x],y) = [xy] pf: Induction on |y|. Basis: D([x],e) = [x] = [xe]. Ind. step: D([x],ya) = d(D([x],y),a) = d([xy],a) = [xya]. QED

Theorem 15.2: $L(M_{\underline{}}) = R$. pf: $x \in L(M_{\underline{}})$ iff $D([e], x) \in F$ iff $[x] \in F$ iff $x \in R$. QED

- Lemma 15.3: \equiv : a Myhill-Nerode relation for R, M: a DFA for R w/o inaccessible states, then
- 1. if we apply the construction $\equiv \rightarrow M_{\equiv}$ to \equiv and then apply $M \rightarrow \equiv_M$ to the result, the resulting relation $\equiv_{M \equiv}$ is identical to \equiv .
- 2. if we apply the construction $M \rightarrow \equiv_M$ to M and then apply $\equiv \rightarrow M_{\equiv}$ to the result, the resulting relation $M \equiv_M$ is identical to M.

$M \rightarrow \equiv M$ and $\equiv M \rightarrow M \equiv are inverses (cont'd)$

Pf: (of lemma 15.3) (1) Let $M_{=} = (Q,S,d,s,F)$ be the DFA constructed as described above. then for any x,y in S*,

 $x \equiv_{M=} y \text{ iff } D([e], x) = D([e], y) \text{ iff } [x] = [y] \text{ iff } x \equiv y.$

(2) Let M = (Q, S, d, s, F) and let M \equiv_M = (Q', S, d', s', F'). Recall that

- $[x] = \{y \mid y \equiv_M x\} = \{y \mid D(s,y) = D(s,x)\}$
- $Q' = \{ [x] \mid x \in S^* \}, \quad s' = [e], F' = \{ [x] \mid x \in R \}$

$$p d'([x], a) = [xa]$$

Now let $f:Q' \rightarrow Q$ be defined by f([x]) = D(s,x).

 1. By def., [x] = [y] iff D(s,x) = D(s,y), so f is well-defined and 1-1. Since M has no inaccessible state, f is onto.

• 2.
$$f(s') = f([e]) = D(s, e) = s$$

- 3. $[x] \in F' <=> x \in R <=> D(s,x) \in F <=> f([x]) \in F.$
- 4. f(d'([x],a)) = f([xa]) = D(s,xa) = d(D(s,x),a) = d(f([x]), a)
- By 1~4, f is an isomorphism from $M \equiv_M to M$. QED

relations

- Theorem 15.4: R: a regular set over S. Then up to isomorphism of FAs, there is a 1-1 correspondence b/t DFAs w/o inaccessible states accepting R and Myhill-Nerode relations for R.
 - I.e., Different DFAs accepting R correspond to different Myhill-Nerode relations for R, and vice versa.
 - We now show that there exists a coarsest Myhill-Neorde relation \equiv_{R} for any R, which corresponds to the unique minimal DFA for R.
- Def 16.1: \equiv_1 , \equiv_2 : two relations. If $\equiv_1 \subseteq \equiv_2$ (i.e., for all x,y, x \equiv_1 y => x \equiv_2 y) we say \equiv_1 refines \equiv_2 . Note: 1. If \equiv_1 and \equiv_2 are equivalence relations, then \equiv_1 refines \equiv_2 iff every \equiv_1 -class is included in a \equiv_2 class.
- 2. The refinement relation on equivalence relations is a partial order. (since \subseteq is ref, transitive and antisymmetric).

The refinement relation

Note:

3. If , $\equiv_1 \subseteq \equiv_2$, we say \equiv_1 is the finer and \equiv_2 is the coarser of the two relations.

4. The finest equivalence relation on a set U is the identity relation $I_U = \{(x,x) \mid x \in U\}$

5. The coarsest equivalence relation on a set U is universal relation $U^2 = \{(x,y) \mid x, y \in U\}$

Def. 16.1: R: a language over S (possibly not regular). Define a relation \equiv_{R} over S* by

 $x \equiv_R y$ iff for all $z \in S^*$ ($xz \in R \le yz \in R$) i.e., x and y are related iff whenever appending the same string to both of them, the resulting two strings are either both in R or both not in R.

Properties of \equiv _R

Lemma 16.2: Properties of \equiv_{R} :

- 0. \equiv_{R} is an equivalence relation over S*.
- 1. \equiv_{R} is right congruent
- 2. \equiv_{R} refines R.
- 3. \equiv_{R} the coarsest of all relations satisfying 0,1 and 2.
- [4. If R is regular => \equiv_{R} is of finite index.]
- Pf: (0) : trivial; (4) immediate from (3) and theorem 15.2.

(1)
$$x \equiv_R y \Rightarrow$$
 for all $z \in S^*$ ($xz \in R \le yz \in R$)
 $= > \forall a \forall w$ ($xaw \in R \le yaw \in R$)
 $= > \forall a$ ($xa \equiv_R ya$)
(2) $x \equiv_R y \Rightarrow (x \in R \le y \in R)$
(3) Let \equiv be any relation satisfying 0~2. Then
 $x \equiv y \Rightarrow \forall z \ xz \equiv yz \quad \dots \quad by \text{ ind. on } |z| \text{ using}$
property (1)
 $\Rightarrow \forall z (xz \in R \le yz \in R)$

 $= \forall z (xz \in R \le yz \in R) --- by (2) = > x$ $\equiv_R y.$

Myhill-Nerode theorem

Thorem16.3: Let R be any language over S. Then the following statements are equivalent:

(a) R is regular;

- (b) There exists a Myhill-Nerode relation for R;
- (c) the relation \equiv_{R} is of finite index.

pf: (a) =>(b) : Let M be any DFA for R. The construction $M \rightarrow \equiv_M$ produces a Myhill-Nerode relation for R.

(b) => (c): By lemma 16.2, any Myhill-Nerode relation for R is of finite index and refines $R => \equiv_R$ is of finite index.

(c) = > (a): If \equiv_R is of finite index, by lemma 16.2, it is a Myhill-Nerode relation for R, and the construction $\equiv \rightarrow M_{\equiv}$ produce a DFA for R.

Relations $b/t \equiv R$ and collapsed machine

Note: 1. Since \equiv_{R} is the coarsest Myhill-Nerode relation for a regular set R, it corresponds to the DFA for R with the fewest states among all DFAs for R.

(i.e., let M = (Q,...) be any DFA for R and M = (Q',...) the DFA induced by \equiv_R , where Q' = the set of all \equiv_R -classes = > |Q| = | the set of \equiv_M -classes | > = | the set of \equiv_R - classes | > = | the set of \equiv_R -

= |Q'|. Fact: M=(Q,S,s,d,F): a DFA for R that has been collapsed (i.e., M = M/≈). Then $\equiv_{R} = \equiv_{M}$ (hence M is the unique DFA for R with the fewest states).

pf: $x \equiv_R y$ iff $\forall z \in S^* (xz \in R \le yz \in R)$ iff $\forall z \in S^* (D(s,xz) \in F \le D(s,yz) \in F)$

iff $\forall z \in S^* (D(D(s,x),z) \in F \le D(D(s,y),z) \in F)$ iff $D(s,x) \approx D(s,y)$ iff D(s,x) = D(s,y) -- since M is collapsed

iff $x \equiv_M y$ Q.E.D.

An application of the Myhill-Nerode relation

- Can be used to determine whether a set R is regular by determining the number of ≡_R classes.
- Ex: Let $A = \{a^n b^n \mid n \ge 0 \}$.
 - If $k \neq m = > a^k$ not $\equiv_A a^m$, since $a^k b^k \in A$ but $a^m b^k \notin A$.

Hence \equiv_A is not of finite index => A is not regular. • In fact \equiv_A has the following \equiv_A -classes:

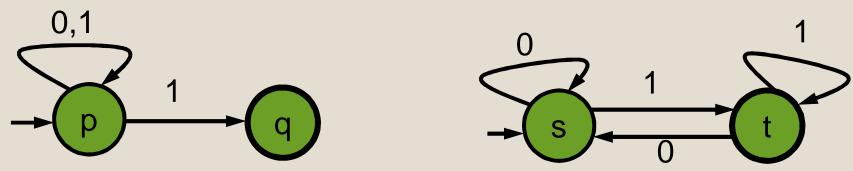
•
$$G_k = \{a^k\}, k \ge 0$$

•
$$H_k = \{a^{n+k} b^n \mid n \ge 1 \}, k \ge 0$$

• $E = S^* - U_{k \ge 0} (G_k U H_k) = S^* - \{a^m b^n \mid m \ge n \ge 0 \}$

Minimal NFAs are not unique up to isomorphism

- Example: let $L = \{ x1 | x \in \{0,1\} \}^*$
- What is the minimum number k of states of all FAs accepting L ?
 Analysis : k ≠ 1. Why ?
- 2. Both of the following two 2-states FAs accept L.



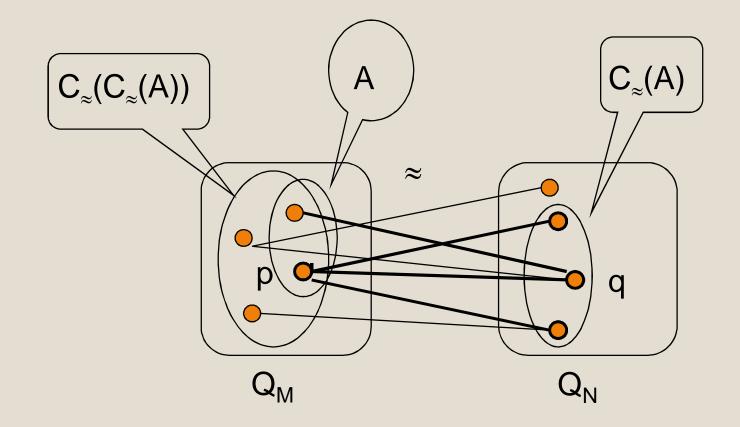
Collapsing NFAs

- Minimal NFAs are not unique up to isomorphism
- Part of the Myhill-Nerode theorem generalize to NFAs based on the notion of *bisimulation*.

Bisimulation:

Def: $M = (Q_M, S, d_M, S_M, F_M), N = (Q_N, S, d_N, S_N, F_N)$: two NFAs, \approx : a binary relation from Q_M to Q_N .

- For $B \subseteq Q_N$, define $C_{\approx}(B) = \{ p \in Q_M \mid \$q \in B \mid p \approx q \}$
- For $A \subseteq Q_M$, define $C_{\approx}(A) = \{q \in Q_N \mid \$P \in A \ p \approx q \}$ Extend \approx to subsets of Q_M and Q_N as follows:
- $A \approx B <=>_{def} A \subseteq C_{\approx}(B)$ and $B \subseteq C_{\approx}(A)$
- iff $\forall p \in A \ \$q \in B \ s.t. \ p \approx q \ and \ \forall q \in B \ \$p \in A \ s.t. \ p \approx q$



Bisimulation

- Def B.1: A relation \approx is called a bisimulation if
 - 1. $S_M \approx S_N$
 - 2. if $p \approx q$ then $\forall a \in S$, $d_M(p,a) \approx d_N(q,a)$
 - 3. if $p \approx q$ then $p \in F_M$ iff $q \in F_N$.
- M and N are *bisimilar* if there exists a bisimulation between them.
- For each NFA M, the *bisimilar class* of M is the family of all NFAs that are bisimilar to M.

• Properties of bisimulaions:

- 1.Bisimulation is symmetric: if ≈ is a bisimulation b/t M and N, then its reverse { (q,p) | p≈q} is a bisimulation b/t N and M.
- 2.Bisimulation is transitive: $M \approx_1 N$ and $N \approx_2 P = > M \approx_1 \approx_2 P$
- 3. The union of any nonempty family of bisimulation b/t M and N is a bisimulation b/t M and N.

Properties of bisimulations

Pf: 1,2: direct from the definition.

(3): Let {≈_i | i ∈ I } be a nonempty indexed set of bisimulations b/t M and
 N. Define ≈ =_{def} U_{i ∈ I} ≈ _i.

Thus $p \approx q$ means $i \in I p \approx q$.

- 1. Since I is not empty, $S_M \approx_i S_N$ for some $i \in I$, hence $S_M \approx S_N$
- 2. If $p \approx q => \$i \in I \ p \approx_i q => d_M(p,a) \approx_i d_N(q,a) => d_M(p,a) \approx d_N(q,a)$
- 3. If $p \approx q => p \approx_i q$ for some $i => (p \in F_M <=> q \in F_N)$

Hence \approx is a bisimulation b/t M and N.

Lem B.3: \approx : a bisimulation b/t M and N. If A \approx B, then for all x in S^{*}, D(A,x) \approx D (B,x).

pf: by induction on |x|. Basis: 1. $x = e = \mathbb{D}(A,e) = A \approx B = D(B,e)$. 2. x = a : since $A \subseteq C_{\approx}(B)$, if $p \in A \Rightarrow q \in B$ with $p \approx q$. $\Rightarrow d_M(p,a) \subseteq C_{\approx}(d_N(q,a)) \subseteq C_{\approx}(D_N(B,a))$. $C_{\approx}(d_N(q,a)) \subseteq C_{\approx}(D_N(B,a))$. $\Rightarrow D_M(A,a) = U_{p \in A} d_M(p,a) \subseteq C_{\approx}(D_N(B,a))$. By a symmetric argument, $D_N(B,a) \subseteq C_{\approx}(D_M(A,a))$. So $D_M(A,a) \approx D_N(B,a)$.

Bisimilar automata accept the same set.

3. Ind. case: assume $D_M(A,x) \approx D_N(B,x)$. Then $D_M(A,xa) = D_M(D_M(A,x), a) \approx D_N(D_N(B,x),a) = D_N(B,xa)$. Q.E.D.

Theorem B.4: Bisimilar automata accept the same set. Pf: assume \approx : a bisimulation b/t two NFAs M and N. Since $S_M \approx S_N => D_M (S_M, x) \approx D_N (S_N, x)$ for all x. Hence for all x, $x \in L(M) <=> D_M (S_M, x) \cap F_M \neq \{\}$ $<=> D_N (S_N, x) \cap F_N \neq \{\} <=> x \in L(N). Q.E.D.$

Def: \approx : a bisimulation b/t two NFAs M and N The support of \approx in M is the states of M related by \approx to some state of N, i.e., { $p \in Q_M \mid p \approx q$ for some $q \in Q_N$ } = $C_{\approx}(Q_N)$.

Autobisimulation

Lem B.5: A state of M is in the support of all bisimulations involving M iff it is accessible.

Pf: Let \approx be any bisimulation b/t M and another FA.

- By def B.1(1), every start state of M is in the support of \approx . By B.1(2), if p is in the support of \approx , then every state in d(p,a) is in the support of \approx . It follows by induction that every accessible state is in the support of \approx .
- Conversely, since the relation $B.3 = \{(p,p) \mid p \text{ is accessible}\}$ is a bisimulation from M to M and all inaccessible states of M are not in the support of B.3. It follows that no inaccessible state is in the support of all bisimulations. Q.E.D.

Def. B.6: An autobisimulation is a bisimlation b/t an automaton and itself.

Property of autobisimulations

- Theorem B.7: Every NFA M has a coarsest autobisimulation \equiv_M , which is an equivalence relation.
- Pf: let B be the set of all autobisimulations on M. B is not empty since the identity relation I_M = { (p,p) | p in Q } is an autobisimulation.
 - 1. let \equiv_M be the union of all bisimualtions in B. By Lem B.2(3), \equiv_M is also a bisimualtion on M and belongs to B. So \equiv_M is the largest (i.e., coarsest) of all relations in B.
- 2. ≡_M is ref. since for all state p (p,p) ∈ $I_M \subseteq \equiv_M$. 3. ≡_M is sym. and tran. by Lem B.2(1,2).
- $A = R_V 2 = A$ is an equivalence relation on O

Find minimal NFA bisimilar to a NFA

 $\bullet M = (Q,S,d,S,F) : a NFA.$

Since accessible subautomaton of M is bisimilar to M under the bisimulation B.3, we can assume wlog that M has no inaccessib states.

Let \equiv be \equiv_{M} , the maximal autobisimulation on M.

for p in Q, let $[p] = \{q \mid p \equiv q\}$ be the \equiv -class of p, and

let « be the relation relating p to its \equiv -class [p], i.e.,

 $\ll \subseteq Qx2^Q =_{def} \{(p,[p]) \mid p \text{ in } Q\}$

for each set of states $A \subseteq Q$, define $[A] = \{ [p] \mid p \text{ in } A \}$. Then _em B.8: For all $A, B \subseteq Q$,

• 1. $A \subseteq C_{\equiv}(B)$ iff $[A] \subseteq [B]$, 2. $A \equiv B$ iff [A] = [B], 3. $A \ll [A]$ of: 1. $A \subseteq C_{\equiv}(B) <=>\forall p$ in $A \forall q$ in B s.t. $p \equiv q <=> [A] \subseteq [B]$ 2. Direct from 1 and the fact that $A \equiv B$ iff $A \subseteq C_{\equiv}(B)$ and $B \subseteq C_{\equiv}(A)$ 3. $p \in A => p \in [p] \in [A]$, $B \in [A] =>$ $p \in A$ with $p \ll [p] = B$

Minimal NFA bisimilar to an NFA (cont'd)

• Now define $M' = \{Q', S, d', S', F'\} = M/=$ where

•
$$Q' = [Q] = \{ [p] \mid p \in Q \},\$$

- $S' = [S] = \{[p] \mid p \in S\}$, $F' = [F] = \{[p] \mid p \in F\}$ and
- d'([p],a) = [d(p,a)],
- Note that d' is well-defined since

 $[p] = [q] => p \equiv q => d(p,a) \equiv d(q,a) => [d(p,a)] = [d(q,a)]$ => d'([p],a) = d'([q],a)

Lem B.9: The relation « is a bisimulation b/t M and M'.

pf: 1. By B.8(3): $S \subseteq [S] = S'$.

2. If $p \ll [q] = p \equiv q = d(p,a) \equiv d(q,a)$

 $= [d(p,a)] = [d(q,a)] = d(p,a) \ll [d(p,a)] = [d(q,a)].$

3. if $p \in F = [p] \in [F] = F'$ and

if $[p] \in F' = [F] =$ \$q \in F with [q] = [p] => $p \equiv q =$ > p By theorem B.4, M and M' accept the same set.

Autobisimulation

- Lem B.10: The only autobisimulation on M' is the identity relation =.
- Pf: Let ~ be an autobisimulation of M'. By Lem B.2(1,2 the relation « ~ » is a bisimulation from M to itself.
 - 1. Now if there are $[p] \neq [q]$ (hence not $p \equiv q$) with $| \sim [q]$
- $=> p \ll [p] \sim [q] \gg q => p \ll \sim \gg q => \ll \sim \gg \not \equiv a$ contradiction !.
- On the other hand, if [p] not~ [p] for some [p] => fc any [q],

[p] not~ [q] (by 1. and the premise)

=> p not (« ~ ») q for any q (p « [p] [q] » q)

=> p is not in the support of « ~ »

Quotient automata are minimal FAs

Theorem B11: M: an NFA w/t inaccessible states, ≡ : maximal autobisimulation on M. Then M' = M /≡ is the minimal automata bisimilar to to M and is unique up to isomorphism.
 pf: N: any NFA bisimilar to M w/t inaccessible states.

 $N' = N/\equiv_N$ where \equiv_N is the maximal autobisimulation on N.

- = > M' bisimiar to M bisimilar to N bisimiar to N'.
- Let \approx be any bisimulation b/t M' and N'.
- Under \approx , every state p of M' has at least on state q of N' with p \approx q and every state q of N' has exactly one state p of M' with $\mu \approx q$.
- O/w p \approx q \approx ⁻¹ p' \neq p => $\approx \approx$ ⁻¹ is a non-identity autobisimulation on M, a contradiciton!.
- Hence \approx is 1-1. Similarly, \approx^{-1} is 1-1 => \approx is 1-1 and onto and hence is an isomorphism b/t M' and N'. Q.E.D.

Algorithm for computing maximal bisimulation

- a generalization of that of Lec 14 for finding equivalent states of DFAs
- The algorithm: Find maximal bisimulation of two NFAs M and N
 - 1. write down a table of all pairs (p,q) of states, initially
 - unmarked

0

- 2. mark (p,q) if $p \in F_M$ and $q \notin F_N$ or vice versa.
- 3. repeat until no more change occur: if (p,q) is unmarked and if for some a ∈ S, either
 \$p' ∈ d_M(p,a) s.t. ∀ q' ∈ d_N(q,a), (p',q') is marked, or
 \$q' ∈ d_N(q,a) s.t. ∀ p' ∈ d_M(p,a), (p',q') is marked, then mark (p,q).
- 4. define $p \equiv q$ iff (p,q) are never marked.
- 5. If $S_M \equiv S_N = > \equiv$ is the maximal bisimulation

o/w M and N has no bisimulation.